
Int. J. Solids Slruclures, 1972, Vol. 8, pp. 1185 to 1204. Pergamon Press. Printed in Great Britain

EXTREMUM PRINCIPLES FOR A CLASS OF DYNAMIC
RIGID-PLASTIC PROBLEMSt

J. B. MARTINt

Division of Engineering, Brown University, Providence, Rhode Island 02912

Abstract-A number ofextremum principles are developed for the acceleration fields associated with rigid-plastic
dynamic loading problems. Major emphasis is given to global and local principles for mode solutions (where the
spatial variables may be separated from time). The extremum principles are developed by first considering a
simple model and then proved for structures of any configuration. The discussion is limited to problems in which
the displacements are small.

1. INTRODUCTION

IN RECENT years Martin and Symonds [1] suggested a means of obtaining approximate
solutions to rigid-plastic impulsive loading problems by using mode solutions, i.e. solutions
in which the shape of the velocity field remains constant. Martin and Symonds showed
that the actual solution converged on the mode solution and that the accelerations in the
mode solution were independent of time. However, they did not provide any formal method
by which the mode acceleration field could be obtained. In applying similar methods to
rigid-viscoplastic problems, Lee and Martin [2] showed that mode solutions could be
obtained by a variational principle. Variational principles cannot be applied with ease to
rigid-plastic problems because of the presence of rigid regions and singularities in the strain
rate field and the original intention of the work reported in this paper was to attempt to
show by alternative methods that a result similar in form to that given by Lee and Martin
could be applied to rigid-plastic problems.

In the course of this work it was discovered that a particularly simple two degree of
freedom model, which can be constructed to illustrate the behavior of a dynamically loaded
rigid-plastic structure, provided a means of suggesting the form of the result which was
sought. This model has previously been used by Rawlings [3,4] and Nayfeh and Prager [5].
In addition to the result which was desired the model indicated the existence of a number
of other hitherto unnoticed extremum principles for the general dynamic problem and the
problem ofa structure deforming dynamically under constant loads. The model is explained
in brief terms and the extremum principles suggested by it are proved in the general case.

2. THE RIGID-PLASTIC DYNAMIC LOADING PROBLEM

Consider a class of structures which consists either of assemblages of curved or straight
bars (one-dimensional) or thin sheets of a given configuration (two-dimensional). In the
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one-dimensional case we neglect the cross section dimensions of the bars in comparison
with their length and locate any point on the structure by means of one space variable
measured along the center-lines of the bars. In the two-dimensional case we neglect the
thickness of the sheet in comparison with the other dimensions and locate a point on the
structure by means of two space variables measured on the middle surface of the sheet. In
either case we can adequately represent the space variables by s and the domain occupied
by the structure by S. Let the specific mass of the structure be m.

The external forces acting on the structure can be represented by p(s, t) (per unit length
or per unit area) and we permit p(s, t) to include delta functions. Further we treat p(s, t) as
generalized forces, including both direct forces and couples. p(s, t) can thus represent
distributed forces, distributed couples, point forces and point couples. We define the
conjugate generalized velocities o(s, t) which include both displacement rates and rotation
rates. The internal forces or generalized stresses can be represented by Qj (j = 1, ... , n)
and the generalized strain rates by qj'

The classical small displacement assumptions will be adopted. Specifically, we assume
that accelerations o(s, t) can be computed as the partial derivatives of 0 with respect to
time t, and that the dynamic equations are written in the original configuration and are
linear in p(s, t), Qis, t) and o(s, t). The kinematic relations, which permit the generalized
strain rates qj to be derived from the generalized velocities 0 and include any appropriate
compatibility relations, are also assumed to be linear. These assumptions permit the
principle of virtual velocities to be written. Ifp, Qi' 0 satisfy the dynamic equations they are
said to be dynamically admissible. If iJ)s, t), o(s, t) satisfy the kinematic relations they are
said to be kinematically admissible. For any dynamically admissible set p(s, t), QJ{s, t), o(s, t)
and any kinematically admissible set qj(s, t), o(s, t) we have

{P(S) .o*(s) ds {mo.o* ds = {QiS)qj(S) ds. (1)

The structure is assumed to be composed of a rigid, perfectly plastic material. The
constitutive relation is

..1. 2 0 for </>

q' . = A o</>
J oQj

where </> </>(Qj) is a convex yield function

o</> .
o and oQj Qj = 0

..1. = 0 for </> < 0

(2)

04> '
or </> = 0 and oQj Qj < 0

</>(Qj) > 0 is not admitted,

Equation (2) applies only if </>(Qj) is continuously differentiable; if corners are present
in the yield surface the outward normal vector to the yield surface in stress space, o</>/oQj
is not uniquely defined, but the direction of the strain rate vector ijj is constrained to lie
between adjacent normals to the yield surface. We note that it follows from the convexity
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of the yield surface and the normality rule that for two states of stress Qj, Qj, which satisfy
the restrictions <j>(Q) :s; 0, <j>(Qj) :s; 0 and their associated strain rates qj, qj,

(Qj - Q)qj 2 0,

and

(3)

If the strain rate qj is given, the stress Qj associated with the strain rate will be uniquely
determined if the yield surface is strictly convex. If the yield surface contains flat regions,
Qj may not be uniquely determined. In all cases, however, the specific rate of dissipation
of energy, D(q), defined by

(4)

is uniquely determined when qj is given.
The dynamic loading problem is given as follows. To specify the boundary conditions,

we give loads p(s, t), or components of the loads, on part of S which we denote by Sp' The
velocity i1(s, t), or components of the velocity, are set equal to zero on the remainder of S,
which we denote by Suo The initial conditions consist of initial velocities i1(s,O) on Sp at
time t = 0, with the initial displacements taken to be zero everywhere.

The solution of the problem involves the determination of the velocity field i1(s, t) on
Sp, the reactions p(s, t) on Su, the stresses Qis, t) and the strain rates qis, t). The uniqueness
of the solution has been discussed by Martin [6J; we expect that the velocity field will be
unique, while the stresses may not be determined uniquely in rigid regions of the body or
where flats on the yield surface occur.

The first problem we shall consider is that of determining the acceleration field o(s, t)
at an instant when the velocity field i1(s, t) is known. It is evident that if this problem can be
solved, the entire dynamic solution can be obtained by considering successive instants in
which the velocity field is obtained by difference formulae from the velocities and accelera
tions at preceding instants.

The second problem which will be studied is the simpler problem, which will be referred
to as the step load problem, in which the loads p(s, t) on Sp are independent of time, i.e.
p(s, t) p(s). In all other respects the problem is identical to that laid out above.

In considering these problems it is our intention to treat first a simple model which
contains all the important elements which contribute to the mechanical behavior. The
model will be seen to suggest new extremum principles for the dynamic rigid-plastic prob
lem, and we shall then proceed to prove these principles without reference to the model.

We shall be concerned first with the general problem of determining the instantaneous
acceleration field in a structure in which the instantaneous velocity field and external load
ing is known. A dynamic (as opposed to kinematic) extremum principle is derived. There
after we shall consider the problem of determining velocity fields which lead to mode
solutions for constant external loads, i.e. solutions in which the velocity field may be written
as a product of independent functions of space and time. Both dynamic and kinematic
principles are derived and the principles may be given in terms of either the acceleration
field in the mode solution or the velocity field. These principles are not strict variational
principles, but are characterized by a functional whose first variation is either non-positive
or non-negative.
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3. A SIMPLE DYNAMIC MODEL

Consider the simple beam shown in Fig. 1. The beam is composed of a rigid-plastic
material. The beam itself is assumed to be massless, but two equal lump masses mare
attached to it. External loads, Pa (ex = 1,2) can be applied to the masses in the vertical plane
and transverse to the beam. The transverse velocities of the masses are ua (ex = 1,2).

•~ ~ Pz

~--··-m--·-m---1~
to I Lz

FIG. 1.

When the beam is loaded quasi-statically (with all inertia terms zero) flow will occur
when the loads take on certain values. These values can be represented by a limit surface
t/J(Pa) = 0 in the Pa space (Fig. 2). When the load state Pa lies within the limit surface, the
beam will be rigid and we arrange t/J so that t/J(Pa) < 0 for such states. When the loads are
such that t/J(Pa) = 0, flow will take place with uanormal to the limit surface at the load point
and in the outward direction if the normal vector is uniquely determined and between
adjacent normals if it is not. t/J(Pa) will be a convex function and loads states such that
t/J(Pa) > 0 cannot be supported with finite velocities ua.

FIG. 2.

Now consider dynamic behavior at one instant t. Let the external loads be Pa(t) and let
the velocities be uit). The beam is in motion and consequently it must be flowing under
conditions governed by the limit surface t/J = O. We can easily identify effective loads
Pa(t), with t/J(Pa) = 0, such that the given velocities ua have the direction of the outward
normal to the limit surface at the effective load point. It is then evident that the accelera
tions ua are such that

(5)

This is shown diagrammatically in Fig. 3 for the case t/J(Pa) > 0; it applies equally well for
t/J(Pa) < o.

Two possible extremum principles are suggested by the possibility ofthe direct applica
tion of the limit theorems (see, for example, Prager [7]). Let P: be some other load state
for which t/J(P:) ::; 0, defining accelerations u: such that

(6)
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FIG. 3.
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as shown in Fig. 4. The inertia forces ( - rna:) thus lead to any effective load which lies within
or on the limit surface. Convexity of the limit surface and the normality rule require that

(7)

FIG. 4.

On substituting from equations (5) and (6), this gives

(8)

If u'" is given for the beam, the strain rates in the beam are known, and hence the rate
of dissipation of energy in plastic work, which we shall denote by

LD(u",)ds

can be computed. We can then define effective loads p2 and a class of accelerations u2 by
means of the equations

(9)

(10)

and

(p", - mu2)U", = LD(u",) ds.

These effective load states lie along the line which is tangent to limit surface at the point
where U", is the normal vector (Fig. 5). There is, however, no way in which we can select the
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FIG. 5.

actual effective load Pa from the class P~ without further consideration of the problem.
The model suggests one extremum principle for the problem, a generalization of the

result given in equation (8). Let us proceed now to formulate and prove this result for the
general case.

4. AN EXTREMUM PRINCIPLE FOR THE ACCELERATION FIELD IN A
RIGID- PLASTIC DYNAMIC PROBLEM

We return now to the general formulation of the problem in the terms given in Section 2.
Suppose that at an instant t we know the loads p(s, t) on Sp, the velocities o(s, t) on Sp and
o = 0 on Suo The strain rate field iJis, t) can be derived from the velocity field. We wish to
find the acceleration field o(s, t) at this same instant.

Let o*(s, t) be an acceleration field such that {p(s, t) - mii*(s, t)} is dynamically admissible
with stresses Qj(s, t) which are such that 4>(Qj) ~ O. ii*(s, t) can thus be referred to as a safe,
dynamically admissible acceleration field. Although it is not strictly necessary, we can limit
the class of safe, dynamically admissible acceleration field by requiring that o*(s, t) = 0
on Suo

The actual acceleration field o(s, t) must be contained within the class of dynamically
admissible acceleration fields. It is distinguished from other members of the class in that
the associated stresses Qj(s, t) are associated with the strain rates iJis, t), derived from the
given velocities ti(s, t), through the constitutive relation (2).

Now formulate the functional

J(ii*) Is mii* . Uds.

We shall show that J takes on its least value when 0 = 0*. It is noted that

J(" *) J(") i .. * . d i .. .du - u = mu. u s- mu . u s.
s s

(11)

(12)
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The principle of virtual velocities gives directly that

f A. d f .. * . d - f Q*' ds p . u s - s mu . u s - s j qj s
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(13a)

(13b)Lp.0 ds - Lmii . 0 ds = LQAj ds.

Subtracting equation (13a) from (13b), it is evident that

Lmii*. ods- Lmii. ods =L(Qj-Qj)4j ds. (14)

Since c/>(Qj) :::;; °and Qj' It are associated through the constitutive relation when 4j #- 0,
it follows [equation (3)], that

(Qj-Qj)4j 2 0.

Hence, substituting equations (14) and (15) into (12), it follows that

J(ii*) 2 J(ii).

(15)

(16)

While our present approach does not provide a complementary or dual extremum
principle, such a principle has been given by Tamui [8] and further discussed by Reitman [9].
In this principle we adopt a velocity field OO(s, t 1), defined for t 1 2 t and satisfying the bound
ary conditions on Suo We require that OO(s, t) = o(s, t), where o(s, t) is the known velocity
field at time t. From the function OO(s, t 1

) we may derive a kinematically defined accelera
tion field iiO(s, t). Similarly from the time derivative of the strain rate field 4J(s, t 1

), derived
from oO(s, t 1

), we may find the strain acceleration ijJ(s, t). This class contains the actual
acceleration field ii(s, t) and the actual strain acceleration ijis, t). TamuZ's principle then
states that the functional

J("O) - f 1. ··0 .. od - fA .. Od + fQO"Odu - zmu. u s p. U S jqj S
S

(17)

takes its least value when iio = ii. In this expression QJ is the stress associated with the strain
rate 4/s, t) in the deforming region of the body. If 4j #- °everywhere in the body, Q/s) is
fully determined and it can be seen that the Euler equation associated with the require
ment that the first variation of J should be zero is simply the dynamic equation. Normally,
however, regions will exist where 4/s, t) = 0, and in these rigid regions the stress is not deter
mined by the strain rate. In the rigid region QJ is taken to be the stress associated with the
strain acceleration ijJ through the constitutive equation when ijJ is treated as if it were a
strain rate. This process is permissible since the stress is determined by the ratio of the
components of strain rate and not its absolute magnitude. Note that Qj will be the stress
associated with ijj when 4j = 0, since plastic flow will be about to occur at that point with
the strain rate having the direction of ijj'

In general the velocity fields in rigid plastic dynamic problems will involve propagating
discontinuities, and great care must be taken in computingiiO(s, t) and 4J(s, t). For complete
ness we will give a brief proof of Tamui's principle; this proof does not rigorously deal
with the discontinuities in that we shall treat iiO(s, t), ijJ(s, t) and ii(s, t), ij/s, t) as kinematically
admissible (i.e. satisfying the strain rate-velocity relations) which in general they do not. It
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is adequate, however, to give some indication of the relation between Tamui's principle
and the results we shall obtain later.

First, by appeal to the principal of virtual velocities, we see that

1 f .... d-2 s mu.u s.J(o) L1mil . 0 ds- LIi. 0 ds+ LQAj ds =

Further, again from the principal of virtual velocities,

0=Lmil. 0° ds- Lp. 0° ds+ i Qiij ds.

Subtracting equation (18) from (17), and adding (19),

(18)

(19)

J(oO)-J(ii) = Is 1m(ii-oO).(0-iiO)ds+ I (Q~-Q)qJds. (20)

The first term in this expression is non-negative. When qj i' 0, Qj = QJ and when qj = 0

(21)

Consequently

(22)

The somewhat artificial way of defining Q~ is essential if we are to get the correct answer
in this extremum principle. It is in this definition that o(s, t) enters the principle. If QJ
were defined simply as the stress associated with qJ an extremum principle could still be
obtained, but it would not give the acceleration field for the desired velocity field. This
point can be clarified by comparing this result with another extremum principle we shall
obtain in Section 5.

The result involving safe dynamically admissible acceleration fields presented in this
section is similar to a minimum principle given for rigid-viscoplastic structures by Nielsen
[10). Nielsen's result would appear to be valid for rigid, perfectly plastic materials, but
involves a more restricted class of acceleration fields. Since we shall confine ourselves to
results suggested by the simple model, Nielsen's result will not be developed further.

5. MODE SOLUTIONS

In terms of the model discussed in Section 3, consider a dynamic problem in which the
external loads Pa are constant, i.e. they do not vary with time. For given initial velocities
ua let us consider the variation of the effective load Pa with time, confining ourselves first
to load states which lie outside the limit surface, such that l/!(Pa) 2 O.

Figure 6 shows the constant loads Pa, the initial velocity ua(O) and the initial value of
the effective load. It is clearly seen that the acceleration ua(O) is such as to rotate the velocity
vector Ua , during an interval of time dt, so that the effective load Pa tends to a value P':
which is such that the outward normal vector to the yield surface passes through Pa . During
the following increments of time Pa will continue to move around the limit surface until it
becomes equal to 1";. Consequently 1"; is the asymptotic solution for Pa · When Pa 1";,
the inertia forces -mua are constant and consequently the accelerations ua = U': are
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-mo':

.mua
-mIJ a (0)

Trajectory
/.io(O) of Pa(t)

-t------,.,..----... PI

FIG. 6.
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constant. Further 14" = 14:' has the same direction as il", and must be a linearfunction oftime.
The asymptotic solution is thus a mode solution of the form

(23)

where a is a constant. The use of mode solutions as a basis for approximate methods was
discussed by Martin and Symonds [1]; in this context it is of considerable interest to have
extremum principles which will provide the acceleration field il:' in the asymptotic solution
directly.

The forms of two complementary extremum principles are suggested by the modeL
First, let P: be any effective load such that t/t(P:) s O. It can be seen from the diagram that
the magnitude of the vector (F" - P:) is greater than the magnitude of the vector (F" - P:,).
With a view of generalizing this result (which is in a somewhat simple form because the
two masses in the model are equal), we can state this equivalently by saying that the
component of mil: in the direction of il: is greater than the component of mil:' in the direc
tion of u:', where il: is any acceleration vector such that t/t(?" - mil:) S O. Thus

(24)

(25)

Alternatively, suppose we treat any choice of acceleration vector it~ as a velocity vector
and associate with it a rate of dissipation of energy in the beam denoted by

LD(it~)ds.

By means of the equation

Po··o = (P~ - "0)"0 = f D("O)"u" "mu" u" u" ,
s

we then define a set of effective loads which lie on a line which is tangent to the limit surface
at the point where the direction of the outward normal vector has the same direction as
u~. Let us now confine our choices of u~ to those for which

Fij~ ~ O.

This class still contains u:,. It can then be seen geometrically in Fig. 7 that it:' is distinguished
from u~ in that the shortest distance from the hyperplane defined by u~ to the load point
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FIG. 7.

PIX takes its greatest value when u~ = u:. This can be written as

(26)

In order to include all the elements which are used in the computation of u2, it may be
noted from equation (25) that

(27)

Thus, substituting from equation (27), inequality (26) may be written as

f D( "O)d -p~ "0+.1 "0"0> f D(::m)d -p~ ··m+.1 "m"mU" S "U" 2mu"U" _ u" S "u" 2mu"U".
S s

(28)

(29)

The simple model thus suggests two extremum principles, one based on the dynamic
requirements and the other on the kinematic requirements. As with other dual theorems
of this type, they can be cOllJbined and written as a continued inequality; from (24) and (28),

.1 ..* "* >.1 ::m"m - p "m_ f D(··m)d _.1 "m"m > P "0_ f D("O)d _.1 ,'0"02mu" mUll _ 2mu" u" - "U" u" S 2mu" u" _ "u" u" S 2mu"U".
s s

Consider now the case where the loads PIX are again constant but lie within the limit
surface, so that t/!(p,,) < O. Although the behavior is substantially the same as the cases
already discussed, there are many important differences which affect the form ofthe general
principles which can be established.

Figure 8 shows the case in which PIX lies within the limit surface, with initial velocities
u,,(O). The effective load P,,(O) is defined and the inertia force vector ( mu,,) can be drawn.

PalO)

ualO)
Trajectory
.m of PaCt)

Lla
-t---r-~--PI

FIG. 8.
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Note now that ila; is directed inwards from the limit surface while ua; is directed outward.
Thus the model will deccelerate, and eventually come to rest. The effective load point will
move along the limit surface because ua; and ila; do not have opposite directions; this process
will be arrested when Pa; reaches a point on the limit surface where ( - ila;) has the direction
of the outward normal. Pa; will then remain constant during the rest of the motion, and the
acceleration vector ila; will be constant, with (-ila;) proportional to ua;. Thus the asymptotic
solution will have the form

U:' = (-il:')(b-t) (30)

where b is a non-negative scalar. This equation holds only while (b - t) is greater than zero;
motion ceases when b = t.

While in the case where ljJ(Fa;) > 0 there was a unique effective load P:' describing the
asymptotic solution, in the case where ljJ(Fa;) < 0 it is clear from the diagram that there
exist a number of effective load P';' for which (- mil:') has the same direction as the outward
normal to the yield surface. Thus there is not a unique asymptotic solution; the asymptotic
solution depends upon the initial conditions. This situation parallels that of free vibra
tions in an elastic structure where there are a number of modes of vibration. The asymptotic
solutions are mode solutions and their number depends on Fa; and the shape of the limit
surface.

It follows from the non-uniqueness of the mode solutions that global extremum
principles cannot be expected. We can at best expect that the mode acceleration field can
be identified by a local maximum or minimum of a certain functional. With this in mind,
consider the dynamic theorem. Let mil: be any acceleration field such that ljJ(Fa; - mil:) ::;; O.
From geometric considerations, we can see that a mode solution can be distinguished from
other members of this class by the characteristic that the vector (- mila;) terminates at a
point on the limit surface at which the outward normal vector has the same direction as
( - mila;). We can then argue, as shown in Fig. 9, that for small variations in the acceleration
vector about a mode solution, within the class defined by the restriction ljJ(Fa; - mil:) ::;; 0,

mila; bila; ::;; 0 for all admissible bila;.

This means that if we formulate the expression

(31)

(32)

(a)

mii:8u a> 0 for some 8u a

(b)

FIG. 9.
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(33)

mode solutions are characterized by the condition that the first variation of J is non
positive for arbitrary variations. This does not imply that J is a local maximum; the in
equality applies only to the first order terms in the change in J and for certain variations
the first order terms will be zero. Whether J is a minimum or a maximum for this subclass
of variations will then depend on the sign of the second order terms. This can be seen
diagrammatically by considering a class of acceleration vectors (- mu:) all of which lie on
the limit surface. J, as defined in equation (31), may be either a minimum or a maximum for
this class of acceleration vectors and the first variation in J is always zero. Some of the
implications of this result will be discussed in greater detail in the following section, where
a general proof will be given.

In formulating a complementary kinematic theorem, we note that the velocity vector
has the opposite sign to the acceleration vector in the mode solution; consequently we
treat (- u~) as a velocity vector and define a class of acceleration vectors by the equation

(p~ - mu~)( - u~) = i D( - u~) ds.

The effective load point so defined will lie on a line which is normal to ii~ and which is
tangent to the yield surface or lies outside of it. If we then consider the functional

(34)

and its first variation

(35)

we see geometrically that bJ is non-negative for an arbitrary variation only when ii~ is a
mode acceleration (Fig. 10). The first variation about a mode solution will always be zero
if we restrict our variation to that subclass for which the line defined by equation (33) is
tangent to the limit surface; for this class of variations J may be either a local maximum or
a local minimum. The first variation will be positive definite only when the line defined by
equation (33) lies outside the limit surface.

(0)

FIG. 10.

mu ~ 8u a < 0 for some 8u a

(b)
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It is possible to identify the mode solution which makes J an absolute minimum; this
mode solution can be termed the principal mode. In most problems the asymptotic solution
will be the principal mode, and consequently it is of particular importance.

We shall now reconsider the general problem and show that the principles suggested
by the simple model can be proved in the gen~ral case.

6. EXTREMUM PRINCIPLES FOR MODE SOLUTIONS

We now consider the general problem in which p(s) is given on Sp and 0 = 0 on Suo
For the present the question of the asymptotic solution will be deferred; we shall simply
seek mode solutions to the dynamic problem, i.e. solutions in which the accelerations are
independent of time. Thus when p(s) is such that the structure cannot support the loads
under quasistatic conditions, we seek solutions of the form

o(s, t) = o(s)(a + t), (36)

and when the structure can support the loads under quasistatic conditions we seek solu
tions of the form

o(s, t) = -o(s)(b-t). (37)

The constants a and b are both non-negative.
An alternative formulation of the mode solution, used by Martin and Symonds [IJ, is

in many applications more convenient than equations (36) and (37), and will be presented
in parallel with the approach we have hitherto taken. Here solutions of the form

o(s, t) = w(s)T(t) (38)

are sought, where w(s) is taken to have the dimensions of velocity and is referred to as the
mode shape and T(t) is dimensionless. Ifwe denote by iJj the strain rates associated with the
mode shape w(s) and note that iJis, t) changes only in magnitude with time, a work rate
balance for the solution of equation (38) gives

. SsP· wds - Ss D(iJj) ds
T = A = . (39)

Ssmw.wds

t is independent of time and hence

T(t) = A+At, A> O. (40)

Comparing equations (38) and (40) with (36) and (37) it is evident that when p(s) cannot be
supported quasistatically A is positive and when p(s) can be supported quasistatically A is
negative. In both cases

o(s) = Aw(s). (41)

(42)

The constants which appear in the equations are related by the following expressions:

A = aA for A> 0

A = - bA for A < O.

It can be noted that A = 0 when the loads p(s) cause quasistatic flow in the structure and
that in the case A < 0 motion ceases when t = tf = - AlA. The general results which we
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shall now proceed to establish will be given first in terms of the notation of equations (36)
and (37) and then in the notation of equations (38H40).

An important feature of the mode solutions is that acceleration fields satisfy the same
boundary conditions and continuity requirements as the velocity fields and that neither
includes propagating discontinuities. This means that the strain accelerations iUs) can be
obtained simply by differentiating the acceleration field o(s) according to the strain rate
displacement rate relations: it is not necessary to derive the strain rates from the velocity
field and then differentiate the strain rate with respect to time. Difficulties encountered in
the rigorous proof of Tamui's principle are then no longer present. The acceleration field
o(s) and the strain accelerations qj(s) can be rigorously treated as a kinematically admissible
set in the principle of virtual velocities,

Consider first the case wbere p(s) cannot be supported quasistatically (A > 0), Let us
define an acceleration field 0* that satisfies the boundary conditions on Su and is such that
we can find stresses Qj which are dynamically admissible with p(s) on Sp, -mii* on Sp
and for which 4>(Qj) < O. The class of acceleration fields so defined contains the actual
mode acceleration field o(s). The actual mode acceleration field is distinguished from other
members of the class in that the strain accelerations qj derived from the acceleration field
are proportional to strain rates CJ.j derived from the velocity field and both can be thought
of as being associated with the dynamically admissible stress field Qj (where CJ.j 1: 0) through
the constitutive relations.

Let us now set up the functional

with

J("*) -51. ..* .. * du - 2mu.U s,
5

J(o) = Is tmii . ii ds.

(43)

(44)

By the principle of virtual velocities, treating the acceleration field as a velocity field since
it satisfies the same continuity requirements,

(45a)

(45b)

Making use of the result that (Qj- Qj)qj ~ 0, since 4>(Qj) ::; 0 and Qj, qj are associated
through the constitutive relation, subtracting (45a) from (45b) gives

-1mii . ii ds ~ - 1mii* . ii ds. (46)
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Now, using (46),

J(ii*) - J(ii) = Ltmii* . ii* ds - Ltmii . ii ds

=Ltmii*. ii* ds- Lmii. ii ds+tLmii. ii ds

>f 1 .• * "*d f .. * "d+ 1 f .. "d_ Imu. u s - mu. U s I mu . U s
s s s

-f 1 (....*)(.. "*)d > 0- Im u - u u - u s _ .
s
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(47)

This shows that J(u*) takes its least value when u* = u. In the alternative formulation, let
us choose a mode shape w*(s), satisfying the boundary conditions on Su, and normalized
by the condition

f mw*. w* ds = K (48)

where K is a positive constant. Let A* be a positive multiplier for which we can find a
dynamically admissible set - rnA*w*(s), p(s), QJ(s) for which ¢(QJ) < O. Substituting A*w*
for ii* in inequality (47), and using the fact that A* and A are each non-negative,

A* ~ A (49)

(50)

provided that w(s) also satisfies the normalizing condition (48).
In order to demonstrate the kinematic theorem for the case where p(s) cannot be sup

ported quasistatically (A > 0), we define a class of acceleration fields iiO(s) with iio = 0 on
Su and which satisfy the same continuity requirements placed on the velocity field. This
class contains the actual mode acceleration field o(s). Consider the functional

J(iiO) = LD(qJ) ds- Lp. iio ds+tLmiio . iio ds

D(qJ) = QJqJ is obtained by treating qJ as if it were a strain rate and determining QJ
from the constitutive equation. Further

J(ii) = LD(qj) ds- Lp. ii ds+t Lmii. ii ds. (51)

From the principle of virtual velocities, noting that Qj' -mii and p are dynamically
admissible,

f A .. Od f ....Od f Q "O ds p . u s - s mu . u s = S J.qj S.

(52a)

(52b)



1200 J. B. MARTIN

From equation (52a) we can see that

J(ii) = -t1 mii. ii ds. (53)

Then, using equation (50), (52b) and (53) it follows that

J(iio)-J(ii)= {tm(iiO-ii).(iiO-ii)dS+ Js(QJ-Qj)qJdS~O. (54)

Consequently J(iiO) takes its least value when iio = Ii.
In the alternative formulation let Wo(s) be a mode shape for which WO = 0 on Su and

which satisfies the continuity requirements for the velocity field. Let Wo and w be subjected
to the normalizing condition

1 mwO . Wo ds = 1 mw. w ds = K. (55)

Further, define A°by the condition

Ao __ Js P.WO ds - Js D(qjO) ds
(56)Smwo. WO ds

We now put 0° = A°wo in equation (50). Using equation (56),

J(AOwO) = AO { D(qjO)ds-AO {P' wOds+(AO)21 tmwo. Wo ds

= _(AO)2 {tmwO. WO ds. (57)

Similarly,

J(Aw) = _A2f tmw. wds
s

and, using equations (54), (55) and noting that A > 0, we see that

A ~ AO.

(58)

(59)

On considering equation (56), this result can be interpreted as stating that the mode shape
maximizes the expression

subject to the constraint ofequation (56). A plays the role of a Lagrangian multiplier in this
formulation.

Now consider the case where the loads p(s) can be supported quasistatically (A < 0),
and the mode solution is given by equation (37). u(s) and U(s) have opposite directions, and
hence we treat (-0) as a velocity field and (-qj) as the associated strain rate field. If Qis)
are the stresses in the mode solution, Qj and (-qj) are associated through the constitutive
equation. The proofof the local extremum principles closely parallels the proofof the global
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extremum principles already given, except that we consider only the immediate neighbor
hood of the mode solution.

In the dynamic theorem we define a class of acceleration fields ii*, with ii* = 0 on Su
and satisfying the continuity requirements on velocity fields, for which a dynamically
admissible set - mii*, p(s), Qj(s) with ¢(Qj) $; 0 can be found. This class contains all the
mode acceleration fields. Let one mode acceleration field ii(s) be selected, and formulate
the functional

J("*) - f .1 .. * .. *do - 2mu.O s
s

with

J(ii) = L1mii . ii ds.

Using the principle of virtual velocities we can write

(60)

(61)

l(P-mii).(-ii)= lQi-q)dS (62a)

l (p mii*). (-ii) ds = l Qj( -ij) ds. (62b)

From equations (60H62) we see that

J(ii)-J(ii*) = l (Qj-Qj)(-qj)ds-1 l m(ii-ii*).(ii-ii*)ds. (63)

The integrand of each term on the right hand side of equation (63) is non-negative. In
general, therefore, J does not have an extremum value when ii* = ii. However, if we
confine ourselves to values of the function ii* which are only infinitesimally different from
ii, the second integrand is certainly of second order. If the first term is of first order, there
fore, the second term may be neglected and the first order difference between J(ii*) and
J(o), which we shaH term the first variation of J(o), is non-positive. If the first term is of
second order, the first variation of J is zero. We cannot assert that J(ii*) is a local minimum
or maximum when ii* = ii; it will often be a saddle point. However, we can assert that a
mode acceleration field is characterized by the condition that the first variation of J(ii*) is
non-positive for arbitrary variations in the acceleration field ii within the class 0*.

In the alternative formulation we define mode shapes w*(s) which satisfy the boundary
conditions on Su' and let A* be a non-positive multiplier for which we can find a dynamically
admissible set - mA*w*(s), fJ(s), Qj(s) with ¢(Qj) ::::; O. Adopting the normalizing condition
of equation (48), we substitute A*w* for 0* and Aw for ii. Note then that

(64)

Noting that both A and A* are non-positive the principle enunciated above then states that,
if w*(s) is only infinitesimally different from w(s), to first order

A*;;:': A. (65)

Note again that to first order A* may be equal to A, while to second order A* may be either
greater than or less than A.
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(66)

The form of this result is rather interesting, but it does not appear likely that it can be
easily exploited as a means of finding w(s), at least by conventional programming methods.

In order to establish the kinematic theorem we define a class of acceleration fields
OO(s), with 0° = 0 on Su, and which satisfy the same continuity requirements placed on the
velocity field. This class contains all mode accelerations. Choose one mode acceleration
field o(s) and formulate the functionals

J(OO) = iD(-qJ)dS+ ifJ.OOds-t i mii°.oods

and

J(o) = iD(-qj)dS+ ifJ.Ods-t imo.ods. (67)

Note that D( -qJ) = QJ( -qJ), where QJ is the stress associated with the strain rate (-qJ)
and D( q) = QJ{ - qJ From the principle of virtual velocities,

ifJ.(-O)dS- i mii.(-o)ds = i Qi-q)ds

iiL(-oO)dS- i mii.(-oO)ds = i QJ{-qJ)ds.

From equation (68a) it can be seen that

(68a)

(68b)

J(o) + 1 f. .... d'2 s mII.U S. (69)

Then, using equations (66), (68b) and (69), it follows that

J("O) J(") f. (Qo Q)( 0) d f. 1 (0 "0) (" "0) du - U = j - j -qj s- 2m -U . u-u s.
s s

(70)

The integrand of each term on the right hand side of equation (70) is non-negative and
consequently J(o) is not a global extremum. However, if we restrict ourselves to accelera
tion fields OO(s) which differ from o(s) by an infinitesimal amount, the second term is
certainly of second order. If the first term is of first order, therefore, the second term may
be neglected and the first order difference between J(OO) and J(o), which we shall again term
the first variation of J(o), is non-negative. If the first term is of second order, the first varia
tion of J is zero. We cannot assert that J is a local minimum or maximum when iio = 0;
it will again often be a saddle point However, we can assert that a mode acceleration field
is characterized by the condition that the first variation ofJ(iio) is non-negative for arbitrary
variations in the acceleration field ii within the class iio.

It may be noted that the acceleration ii 1 which is contained in the class iio and which
makes J(iio) a global minimum satisfies the condition imposed on a mode acceleration field;
let us term this the principal mode. It is clear then that the principal mode can be obtained
by conventional programming methods. It does seem possible that other mode accelera
tion fields can be generated by use of the principle given above, in contrast to the dynamic
principle. We offer this argument without rigorous proof; further work will be needed to
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establish whether it holds in sufficient generality to be useful. In many problems, particu
larly in impulsive loading problems were p = 0 on Sp, the modes are orthogonal. If this
is true for the problem under consideration, it would appear that the second mode
acceleration field 0 2 can be obtained by minimizing J(OO) subject to the additional condition

f ··0 .. 1d - 0mu.u s - . (71)

(73a)

The third and higher modes can then be found in a similar way. In many problems, however,
the modes are not orthogonal and this procedure could not be applied.

In the alternative representation let WO(s) be a mode shape, with WO = 0 on Suo Let WO
and Wo again be normalized by the condition of equation (55). Further, define A° by the
equation

° fs p.WO ds - fs D(tjjO) ds
A = (72)Is mwo. WO ds

We now replace mii°(s) by mAOw(s) in the final expression in equation (66), and (-0°) by
WO(s) in the remaining places where 0° occurs. This device is necessary because A° will be
negative (at least in the vicinity of A). Using (72), equation (66) becomes

J(WO) = LQJqjO ds- Lp. WO ds+Ao Ltmwo. WO ds

= -AoLtmwo. WO ds.

Similarly,

J(w) = - A Ltmw . w ds.

The principle then states that to first order

A ~ AO

(73b)

(74)

for WO in the vicinity of a mode shape. Note that A is negative. When A = A° to first order,
nothing further can be stated.

The global maximum value of AO, and the mode shape associated with it, may be
identified as the principal mode. Considering equation (72), the principle mode shape is
obtained by finding the global maximum of the expression

subject to the constraint of equation (55). This result is similar to that obtained for the case
where A > 0; the difference lies in that the global maximum when A < 0 is one ofa number
of local maxima or saddle points.

A resemblance between the functions of equation (50) and (66) and TamuZ's principle
[equation (17)] may be observed. However, the important distinction between the principles
lies in the definition of QJ. In TamuZ's principle Q~ is defined at least in part by the given
velocity field, and the principle yields the acceleration field associated with that velocity
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field. In the mode extremum principles QJ is determined by qJ alone, and the principle
yields both the mode acceleration field and the mode velocity field.

7. CONCLUSIONS

The global and local principles given in this paper provide a means of computing
acceleration fields for dynamically loaded rigid-plastic structures.

The principles governing mode solutions are of particular value, complementing the
work of Martin and Symonds [1J in which means of using the mode solution as an approxi
mate method of analysis were discussed. In a future paper further applications of this
approximate technique will be discussed, including applications ofthe principles presented
in this paper.

Further study of the simple two degree of freedom model will also be carried out in the
expectation that it will also provide physical insight and new results for more complex
problems.

Acknowledgemelll-The author is indebted to Professor P. S. Symonds for his advice and criticism during the
preparation of this paper.
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A6cTpaKT-OnpeAemleTcH HeKoTopoe 'lHcno npHH~HnOB 3KcTpeMyMa AnH noneH yCKopeHHJI, CBJl3aHHblX c
3aAaqaMIf lKecTKOre-nJIaCTlfQeCKOH AlfHaMH'IeCKOH Harpy3KH. 06pall.\aeTCJI 60JIbllJOe BHHMaHlfe K rJIo6a
JIbHbIM H nOKaJIbHbIM npHHIIlfnaM AJIJI BHAOB pellJeHHH, B KOTOpbIX MOlKHO npocTpaHcTBeIIIIbIe nepeMe
IIHbIe oTAenHTb OT BpeMeHH.

Onpe,!l,enJiIOTCJI npHII~HnbI 3KcTpeMyMa, nyTeM lICCJIeAOBaIIHJI npocIOH Mo.n;enH If 3aTeM o6cYlK.n;eHHSl
KOIICTPYK~HH JU060H KOHqlHrypaIIHH. Bce 3TH Hccne.n;OBaHH.lI OrpaHH'IeHbI K 3a,n;a'laM, B KOTOpbIX Manble
nepeMeIIIeHHJI.


